next up previous
Next: Continuamos con las afinidades Up: Transformaciones geométricas. Previous: El grupo G() como

Cambio de referencia y matriz de una afinidad

Brevemente, puesto que la construcción es exactamente la misma que para espacios vectoriales, vamos a estudiar cómo varía la matriz de una afinidad cuando cambiamos la referencia afín. Partimos, por tanto, de un espacio afín ($ \mathbb {A}$, V) y dos referencias $ \mathcal {R}$ = ($ \bf O$,(e1,..., en)) y $ \mathcal {R}$$\scriptstyle \prime$ = ($ \bf O'$,(e'1,..., e'n)). Supongamos que la relación entre ambas referencias viene dada de la siguiente manera:

$\displaystyle \left\{\vphantom{
\begin{array}{l}
{\bf O'}=({o'}_{1},\dots,{o'}_...
...}\\
\vdots\\
e'_{n}=\mu _{n1}e_{1}+\dots+\mu _{nn}e_{n}
\end{array}}\right.$$\displaystyle \begin{array}{l}
{\bf O'}=({o'}_{1},\dots,{o'}_{n})\\
e'_{1}=\m...
...{1n}e_{n}\\
\vdots\\
e'_{n}=\mu _{n1}e_{1}+\dots+\mu _{nn}e_{n}
\end{array}$

es decir, que la matriz de paso de $ \mathcal {R}$$\scriptstyle \prime$ a $ \mathcal {R}$ es P:

P = $\displaystyle \left(\vphantom{
\begin{array}{c\vert ccc}
{\bf 1}& 0 & \dots & 0...
... \ddots & \vdots\\
o'_{n} & \mu _{1n} & \dots & \mu _{nn}
\end{array}}\right.$$\displaystyle \begin{array}{c\vert ccc}
{\bf 1}& 0 & \dots & 0\\
\hline
o'_{1...
...\vdots & \ddots & \vdots\\
o'_{n} & \mu _{1n} & \dots & \mu _{nn}
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{c\vert ccc}
{\bf 1}& 0 & \dots & 0...
... \ddots & \vdots\\
o'_{n} & \mu _{1n} & \dots & \mu _{nn}
\end{array}}\right)$.

Sea (f,$ \varphi$) una afinidad de $ \mathbb {A}$. Supongamos que, en la referencia $ \mathcal {R}$ su matriz es M:

M = $\displaystyle \left(\vphantom{
\begin{array}{c\vert ccc}
{\bf 1}& 0 & \dots & 0...
...ts & \ddots & \vdots\\
p_{n} & m _{1n} & \dots & m _{nn}
\end{array}}\right.$$\displaystyle \begin{array}{c\vert ccc}
{\bf 1}& 0 & \dots & 0\\
\hline
p_{1}...
...s & \vdots & \ddots & \vdots\\
p_{n} & m _{1n} & \dots & m _{nn}
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{c\vert ccc}
{\bf 1}& 0 & \dots & 0...
...ts & \ddots & \vdots\\
p_{n} & m _{1n} & \dots & m _{nn}
\end{array}}\right)$.

Esto quiere decir que si $ \bf Q$ es un punto de coordenadas (q1,..., qn) y (x1,..., xn) son las coordenadas de f ($ \bf Q$) (ambos en la referencia $ \mathcal {R}$), entonces

$\displaystyle \left(\vphantom{
\begin{array}{c}
{\bf 1}\\  \hline x_{1}\\  \vdots\\  x_{n}
\end{array}}\right.$$\displaystyle \begin{array}{c}
{\bf 1}\\  \hline x_{1}\\  \vdots\\  x_{n}
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{c}
{\bf 1}\\  \hline x_{1}\\  \vdots\\  x_{n}
\end{array}}\right)$ = $\displaystyle \left(\vphantom{
\begin{array}{c\vert ccc}
{\bf 1}& 0 & \dots & 0...
...ts & \ddots & \vdots\\
p_{n} & m _{1n} & \dots & m _{nn}
\end{array}}\right.$$\displaystyle \begin{array}{c\vert ccc}
{\bf 1}& 0 & \dots & 0\\
\hline
p_{1}...
...s & \vdots & \ddots & \vdots\\
p_{n} & m _{1n} & \dots & m _{nn}
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{c\vert ccc}
{\bf 1}& 0 & \dots & 0...
...ts & \ddots & \vdots\\
p_{n} & m _{1n} & \dots & m _{nn}
\end{array}}\right)$$\displaystyle \left(\vphantom{
\begin{array}{c}
{\bf 1}\\
\hline
q_{1}\\
\vdots\\
q_{n}
\end{array}}\right.$$\displaystyle \begin{array}{c}
{\bf 1}\\
\hline
q_{1}\\
\vdots\\
q_{n}
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{c}
{\bf 1}\\
\hline
q_{1}\\
\vdots\\
q_{n}
\end{array}}\right)$.

Para cambiar de referencia, hemos de sustituir (x1,..., xn) y (q1,..., qn) por las coordenadas de f ($ \bf Q$) y $ \bf Q$ en la referencia $ \mathcal {R}$$\scriptstyle \prime$. Por las fórmulas del cambio de referencia afín, si las coordenadas de $ \bf Q$ y f ($ \bf Q$) en $ \mathcal {R}$$\scriptstyle \prime$ son, respectivamente, (q'1,..., q'n) y (x'1,..., x'n), se tiene que

  $\displaystyle \left(\vphantom{ \begin{array}{c} {\bf 1}\\ \hline x_{1}\\ \vdots\\ x_{n} \end{array} }\right.$$\displaystyle \begin{array}{c} {\bf 1}\\ \hline x_{1}\\ \vdots\\ x_{n} \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c} {\bf 1}\\ \hline x_{1}\\ \vdots\\ x_{n} \end{array} }\right)$ = $\displaystyle \left(\vphantom{ \begin{array}{c\vert ccc} {\bf 1}& 0 & \dots & 0...
...& \ddots & \vdots\\ o'_{n} & \mu _{1n} & \dots & \mu _{nn} \end{array} }\right.$$\displaystyle \begin{array}{c\vert ccc} {\bf 1}& 0 & \dots & 0\\ \hline o'_{1} ...
...& \vdots & \ddots & \vdots\\ o'_{n} & \mu _{1n} & \dots & \mu _{nn} \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c\vert ccc} {\bf 1}& 0 & \dots & 0...
...& \ddots & \vdots\\ o'_{n} & \mu _{1n} & \dots & \mu _{nn} \end{array} }\right)$$\displaystyle \left(\vphantom{ \begin{array}{c} {\bf 1}\\ \hline x'_{1}\\ \vdots\\ x'_{n} \end{array} }\right.$$\displaystyle \begin{array}{c} {\bf 1}\\ \hline x'_{1}\\ \vdots\\ x'_{n} \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c} {\bf 1}\\ \hline x'_{1}\\ \vdots\\ x'_{n} \end{array} }\right)$   y    
  $\displaystyle \left(\vphantom{ \begin{array}{c} {\bf 1}\\ \hline q_{1}\\ \vdots\\ q_{n} \end{array} }\right.$$\displaystyle \begin{array}{c} {\bf 1}\\ \hline q_{1}\\ \vdots\\ q_{n} \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c} {\bf 1}\\ \hline q_{1}\\ \vdots\\ q_{n} \end{array} }\right)$ = $\displaystyle \left(\vphantom{ \begin{array}{c\vert ccc} {\bf 1}& 0 & \dots & 0...
...& \ddots & \vdots\\ o'_{n} & \mu _{1n} & \dots & \mu _{nn} \end{array} }\right.$$\displaystyle \begin{array}{c\vert ccc} {\bf 1}& 0 & \dots & 0\\ \hline o'_{1} ...
...& \vdots & \ddots & \vdots\\ o'_{n} & \mu _{1n} & \dots & \mu _{nn} \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c\vert ccc} {\bf 1}& 0 & \dots & 0...
...& \ddots & \vdots\\ o'_{n} & \mu _{1n} & \dots & \mu _{nn} \end{array} }\right)$$\displaystyle \left(\vphantom{ \begin{array}{c} {\bf 1}\\ \hline q'_{1}\\ \vdots\\ q'_{n} \end{array} }\right.$$\displaystyle \begin{array}{c} {\bf 1}\\ \hline q'_{1}\\ \vdots\\ q'_{n} \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c} {\bf 1}\\ \hline q'_{1}\\ \vdots\\ q'_{n} \end{array} }\right)$    

de donde

$\displaystyle \left(\vphantom{ \begin{array}{c\vert ccc} {\bf 1}& 0 & \dots & 0...
...& \ddots & \vdots\\ o'_{n} & \mu _{1n} & \dots & \mu _{nn} \end{array} }\right.$$\displaystyle \begin{array}{c\vert ccc} {\bf 1}& 0 & \dots & 0\\ \hline o'_{1} ...
...& \vdots & \ddots & \vdots\\ o'_{n} & \mu _{1n} & \dots & \mu _{nn} \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c\vert ccc} {\bf 1}& 0 & \dots & 0...
...& \ddots & \vdots\\ o'_{n} & \mu _{1n} & \dots & \mu _{nn} \end{array} }\right)$$\displaystyle \left(\vphantom{ \begin{array}{c} {\bf 1}\\ \hline x'_{1}\\ \vdots\\ x'_{n} \end{array} }\right.$$\displaystyle \begin{array}{c} {\bf 1}\\ \hline x'_{1}\\ \vdots\\ x'_{n} \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c} {\bf 1}\\ \hline x'_{1}\\ \vdots\\ x'_{n} \end{array} }\right)$ =    
= $\displaystyle \left(\vphantom{ \begin{array}{c\vert ccc} {\bf 1}& 0 & \dots & 0...
...dots & \ddots & \vdots\\ p_{n} & m _{1n} & \dots & m _{nn} \end{array} }\right.$$\displaystyle \begin{array}{c\vert ccc} {\bf 1}& 0 & \dots & 0\\ \hline p_{1} &...
...dots & \vdots & \ddots & \vdots\\ p_{n} & m _{1n} & \dots & m _{nn} \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c\vert ccc} {\bf 1}& 0 & \dots & 0...
...dots & \ddots & \vdots\\ p_{n} & m _{1n} & \dots & m _{nn} \end{array} }\right)$ $\displaystyle \left(\vphantom{ \begin{array}{c\vert ccc} {\bf 1}& 0 & \dots & 0...
...& \ddots & \vdots\\ o'_{n} & \mu _{1n} & \dots & \mu _{nn} \end{array} }\right.$$\displaystyle \begin{array}{c\vert ccc} {\bf 1}& 0 & \dots & 0\\ \hline o'_{1} ...
...& \vdots & \ddots & \vdots\\ o'_{n} & \mu _{1n} & \dots & \mu _{nn} \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c\vert ccc} {\bf 1}& 0 & \dots & 0...
...& \ddots & \vdots\\ o'_{n} & \mu _{1n} & \dots & \mu _{nn} \end{array} }\right)$$\displaystyle \left(\vphantom{ \begin{array}{c} {\bf 1}\\ \hline q'_{1}\\ \vdots\\ q'_{n} \end{array} }\right.$$\displaystyle \begin{array}{c} {\bf 1}\\ \hline q'_{1}\\ \vdots\\ q'_{n} \end{array}$$\displaystyle \left.\vphantom{ \begin{array}{c} {\bf 1}\\ \hline q'_{1}\\ \vdots\\ q'_{n} \end{array} }\right)$    

Despejando (1, x'1,..., x'n), al ser P la matriz de cambio de referencia, obtenemos, como siempre, que la matriz M' de (f,$ \varphi$) en la referencia $ \mathcal {R}$$\scriptstyle \prime$ es, precisamente

M' = P-1MP.

Nota 3.1.14   Es importante darse cuenta de que el producto de dos matrices de GLn(K), que ponemos

M = $\displaystyle \left(\vphantom{
\begin{array}{c\vert c}
{\bf 1}& \begin{array}{c...
...begin{array}{c}
p_{1}\\
\vdots\\
p_{n}
\end{array}&
M'
\end{array}}\right.$$\displaystyle \begin{array}{c\vert c}
{\bf 1}& \begin{array}{ccc} 0 & \dots & 0...
...\hline
\begin{array}{c}
p_{1}\\
\vdots\\
p_{n}
\end{array}&
M'
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{c\vert c}
{\bf 1}& \begin{array}{c...
...begin{array}{c}
p_{1}\\
\vdots\\
p_{n}
\end{array}&
M'
\end{array}}\right)$   y   N = $\displaystyle \left(\vphantom{
\begin{array}{c\vert c}
{\bf 1} & \begin{array}{...
...gin{array}{c}
q_{1} \\
\vdots \\
q_{n}
\end{array}&
N'
\end{array}}\right.$$\displaystyle \begin{array}{c\vert c}
{\bf 1} & \begin{array}{ccc}
0 & \dots & ...
...line
\begin{array}{c}
q_{1} \\
\vdots \\
q_{n}
\end{array}&
N'
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{c\vert c}
{\bf 1} & \begin{array}{...
...gin{array}{c}
q_{1} \\
\vdots \\
q_{n}
\end{array}&
N'
\end{array}}\right)$

es una matriz del mismo tipo

MN = R = $\displaystyle \left(\vphantom{
\begin{array}{c\vert c}
{\bf 1} & \begin{array}{...
...gin{array}{c}
r_{1} \\
\vdots \\
r_{n}
\end{array}&
R'
\end{array}}\right.$$\displaystyle \begin{array}{c\vert c}
{\bf 1} & \begin{array}{ccc}
0 & \dots & ...
...line
\begin{array}{c}
r_{1} \\
\vdots \\
r_{n}
\end{array}&
R'
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{c\vert c}
{\bf 1} & \begin{array}{...
...gin{array}{c}
r_{1} \\
\vdots \\
r_{n}
\end{array}&
R'
\end{array}}\right)$

donde, y esto es lo importante, R' = M'N'. Digo esto porque cuando estudiemos las afinidades, vamos a ``simplificar'' siempre la matriz ``inferior derecha'' y podremos hacerlo precisamente porque la operación producto funciona en la matriz inferior derecha exactamente como el producto de matrices de tamaño n×n.


next up previous
Next: Continuamos con las afinidades Up: Transformaciones geométricas. Previous: El grupo G() como
Pedro Fortuny Ayuso 2001-06-15